

SEDATING THE WILD: EXPLORING THE USE OF MIDAZOLAM IN ZOO AND WILDLIFE MANAGEMENT

DR COBUS RAATH

CLASSIFICATION

TRANQUILISERS

- also called neuroleptics
- modify CNS function
- generally have no antidotes
- ↑ dose does not ↑ the effects
- no analgesia or immobilisation
- behaviour modifiers

SEDATIVES

- also called hypnotics
- causes CNS depression
- have antidotes available
- ↑ dose ↑ the effect

CLASSIFICATION

TRANQUILISERS

Phenothiazine derivatives

- acepromazine
- perphenazine

Butyrophenones

- azaperone
- haloperidol

Thioxanthenes

zuclopenthixol

SEDATIVES

Benzodiazepines

- diazepam
- midazolam

Alpha₂-adrenoreceptor agonists

- xylazine
- detomidine
- medetomidine / dexmedetomidine

Benzodiazepines (BZDs) MOM

- Gamma-aminobutyric acid (GABA) is the primary physiological inhibitory neurotransmitter in the CNS
- Benzodiazepines are GABA agonists that enhance the GABA-receptor's affinity for endogenous GABA (increased effect)
- GABA results in:
 - Sedation
 - Anxiolysis
 - Muscle relaxation
 - Anticonvulsant effects

Benzodiazepines (BZDs) MOM

- Recent evidence suggests a 10 kDa protein named `Diazepam binding inhibitor' (DBI) is the brain's endogenous BZD (endozepine).
- Depending on the brain region, DBI can potentiate or inhibit GABAR activity suggesting that the brain can modulate GABAR-mediated neuronal inhibition by controlling the levels of DBI and its cleavage products.

- Little, however, is known about how DBI levels are regulated, how it is processed, or how DBI exerts its positive versus negative effects on GABAR activity.
- Decreases in GABAergic neurotransmission
 are linked to numerous neurological and
 mental health disorders such as insomnia,
 epilepsy, anxiety, autism, Fragile X syndrome
 and schizophrenia

Benzodiazepines (BZDs) MOM

- Simply put, GABA sends its inhibitory message by binding at special sites called GABA-A receptors on the outside of the receiving neuron.
- Once GABA is bound to the GABA-A receptor, the neuron opens a channel which allows chloride ions to pass inside of the neuron.
- These negative chloride ions make the neuron less responsive to other neurotransmitters (norepinephrine [noradrenaline], serotonin, acetylcholine and dopamine) which would normally excite it.

Benzodiazepines (BZDs) MOM

- Benzodiazepines also bind to their own receptors (benzodiazepine receptors) that are situated on the GABA-A receptor.
 - Combination of a benzodiazepine at this site acts as a booster to the actions of GABA, allowing more chloride ions to enter the neuron, making it even more resistant to excitation.

- Lack of direct agonistic activity = very wide safety margin
- The highest concentration of GABA A receptors is found in the cerebral cortex, very few receptor sites found outside the CNS, hence minimal cardiopulmonary effects
- They cause a reduction in cerebral blood flow and an even greater reduction in oxygen consumption useful in CNS disease
- They do not provide analgesia

- Clinical effects of benzodiazepines
 - Good muscle relaxation
 - Minimal respiratory and cardiovascular effect at normal doses
 - Anticonvulsant properties
 - Anxiolysis (relaxed but awake)
 - Appetite-stimulating effects
 - Midazolam has a profound amnesic effect

Behaviour animal 4 = vigilance

Peak in heart rate of animal 4

Corresponds to video

- Side effects of benzodiazepines:
 - Paradoxical excitation in young healthy animals
 - At very high doses, relaxation of striated muscles in the diaphragm – accentuation of respiratory depression
 - Can produce a severe sedation in sick or old animals
 - Prolonged recovery in elephants and rhinos

BENZODIAZEPINES CLASSIFIED BY HALF LIFE

Short Acting < 1 to 12 h	Intermediate Acting: 12 – 40 h	Long Acting: 40 – 250 h
<mark>Alprazolam</mark>	Flunitrazepam	Clorazepate
Triazolam	Clonazepam	Diazepam
Oxazepam	<mark>Lorazepam</mark>	Chlordiazepoxide
Midazolam	Temazepam	Flurazepam

Benzodiazepine metabolism:

- Metabolised by the liver, then excreted by urine after process of glucuronidation.
- EXCEPTIONS (no liver metabolism): oxazepam, temazepam, lorazepam

BENZODIAZEPINES USED IN WILDLIFE

DIAZEPAM

MIDAZOLAM

Both are classified as "short-acting" – lasting < 6 hours in comparison to other benzos

PROPERTIES OF BENZOS AS WILDLIFE SEDATIVES

DIAZEPAM

- Good muscle relaxant
- Minimal respiratory and cardiovascular effect
- Anticonvulsant
- Can be used to control severe extrapyramidal effects
- Anxiolytic
- Appetite-stimulating effect
- Excellent tranquilization in ostriches
- Not recommended for IM administration (oil-based)
- Often used orally (powder mixed with maizemeal / pills dissolved in liquid)

PROPERTIES OF BENZOS AS WILDLIFE SEDATIVES

MIDAZOLAM

- More potent than diazepam
- Tolerated if given IM
- Profound amnesic effect
- Better anticonvulsant, anxiolytic & amnesic than diazepam
- Often used for per os administration in meat for large carnivores or as a premedication for primates
- Shorter duration of action 30 minutes
- Used in rhinos
- Used for prolonged anaesthesia to decrease the dose of general anaesthetics (dental procedures in carnivores and primates)

BENZODIAZEPINE ANTAGONISTS

FLUMAZENIL

- Binds competitively to the benzodiazepine site on the GABA A Receptor
- High affinity
- Virtually no agonistic activity
- Safe and effective
- Short acting = re-sedation possible
- Expensive
- At high doses (> 0.08 mg/kg) doses severe shivering, muscle rigidity,
 opisthotonos and seizures can occur
- Dose: re-sedation has been observed at 0.01-0.03 mg/kg dose → recently recommended dose is 0.04 0.06 mg/kg

BENZODIAZEPINE ANTAGONISTS

SARMEZENIL

- Successfully used to antagonize effects of zolazepam in cheetahs & lions (Stander & Morkel 1991; Walzer & Huber 2002)
- Should be a valuable alternative to flumazenil (Walzer & Huber 2002)
- Dose: 0.1 mg/kg

MIDAZOLAM AS PREMEDICATION

Species	Dose	Route
Primates	0.5 mg/kg	Oral
Ungulates	0.2 mg/kg	IM
Predators	0.4 – 0.5 mg/kg	Oral (bait)

COMBINATIONS USED IN PREDATORS

	Dose (mg/kg)			
Species	Midazolam	Medetomidine	Butorphanol	Ketamine
African leopard	0.2	0.06	0.3	
African lion	0.2	0.025-0.05	0.2-0.3	
AITICAITIIOIT	0.1	0.04-0.04		2.2-2.7
Black-footed cat (captive)	0.1	0.05	0.2	
Black-footed cat (wild)	0.2	0.1	0.4	
Cheetah	0.15	0.035	0.2	
Spotted hyena (higher dose for juvenile animals)	0.25-0.5	0.07-0.13	0.25-0.8	

COMBINATIONS USED IN UNGULATES

	Dose (mg/kg)			
Species	Midazolam	Thiafentanil OR Etorphine		
General ungulates immobilisation	0.2	0.01-0.03		
General ungulates sedation	0.2			

COMBINATIONS USED IN EQUINE SPECIES

	Dose (mg/kg)				
Species	Midazolam	Etorphine	Ketamine	Medetomidine	Azaperone
Hartmann's mountain zebra	0.2	0.2-0.3			
Mountain zebra	0.2	0.01-0.02			0.1-0.25
	0.2	0.01-0.03			
Plains zebra	0.1-0.2	0.02-0.03			0.2-0.5
	0.1		2.7	0.06	Standing sedation

COMBINATIONS USED IN PRIMATES

	Dose (mg/kg)			
Species	Midazolam	Ketamine	Butorphanol	
General primate premedication (oral)	0.5			
Chacma baboon	0.035-0.05	10		
Chimpanzee	0.05	5	0.05	
Gorilla	0.05	5	0.04	

COMBINATIONS USED IN AVIAN SPECIES

	Dose (mg/kg)			
Species	Midazolam	Ketamine	Butorphanol	Isoflurane
Amazon parrots (intrapasal)	1	15		
Amazon parrots (intranasal)	2			
Budgerigar (intranasal)	13-14			Deep sedation
Cookatiala (introposal)	3		3	
Cockatiels (intranasal)	3			Mild sedation
General birds immobilisation	0.5	25	1.5	2.5%
General passeriformes species (intranasal)	5.6			
General psittacidae species (IM premed)	0.5		1	
General psittacidae species (Intranasal sedation)	2			

COMBINATIONS USED IN AVIAN SPECIES CONT.

	Dose (mg/kg)			
Species	Midazolam	Ketamine	Butorphanol	Isoflurane
Great white pelican (IM)	1		0.5	5 hrs recovery
Guinea fowl (<i>IM</i>)	0.3	15		+2.5 mg/kg xylazine
	0.3	Only for sedation		
Ostrich (<i>IM</i>)	0.45	5		
	0.2	8.7	0.4	0.4
Ding pools deposits (introposit)	3.7	10		
Ring-necked parakeets (<i>intranasal</i>)	7.3			Deep sedation

COMBINATIONS USED IN MARINE MAMMALS

	Dose (mg/kg)			
Species	Midazolam	Ketamine	Butorphanol	Medetomidine
Cape fur seal	0.2		0.2	0.03
California sea lion	0.15		0.1	0.03
Camorna sea non	0.25		0.4	0.012
Crabeater seal	0.55			Moderate sedation
Harbor seal pups	0.1-0.2		010.2	
North Atlantic right whale	0.1		0.1	Used for disentanglement
Weddel seal	0.1	2		
Weddel seal pups	0.2-0.3		0.1-0.2	Transient apnoea

ADMINISTRATION AFTER RECUMBENCY

- To "smooth out" the anaesthesia
- Stop shivering in rhino or kicking in sable
- Increase muscle relaxation
- Prolong anaesthesia
- Low dose (0,005 mg/kg-0.03 mg/kg) IV
- Smaller animals higher doses.

PARADOXICAL HYPER EXCITEMENT

- Paradoxical reactions to benzodiazepines, characterized by increased, excitement, and excessive movement, are relatively uncommon and occur in less than 1% of human patients.
- The exact mechanism of paradoxical reactions remains unclear.
- Personal experience in adult black rhino bull – hand reared
- Personal Communication received of repetitive occurrence in the same white rhino calf

QUESTIONS?

REMEMBER TO FOLLOW

- in Wildlife Pharmaceuticals South Africa
- @wildlife_pharmaceuticals
- Wildlife Pharmaceuticals South Africa